The information set forth herein is furnished free of charge and based on technical data that Chemours believes to be reliable. Chemours makes no warranties, express or implied, and assumes no liability in connection with any use of this information. Nothing herein is to be taken as a license to operate under or a recommendation to infringe any patents or patent applications.

Opteon™ and any associated logos are trademarks or copyrights of The Chemours Company FC, LLC. Chemours™ and the Chemours Logo are trademarks of The Chemours Company.

Two-phase immersion cooling (2-PIC) technology, when combined with new low GWP fluid, has the potential to be the most sustainable data center cooling solution.

How 2-PIC works

Electronic equipment is placed inside a sealed tank filled with Opteon™ dielectric fluid.

The heat from the electronic equipment causes the fluid (thanks to its ideal boiling point) to boil.

Vapor rises and condenses back to a liquid when it makes contact with the condenser coils.

The fluid returns to the pool.

Worldwide, data centers consume: ~300 terawatt-hours (TWh) of electricity.

While producing nearly: 1% of energy-related carbon emissions.

The global data infrastructure market is projected to grow at a CAGR of 12% through 2030.

The SOLUTION

Advancing next-generation computing speeds

Competing cooling technologies simply lack the necessary heat-transfer capabilities required to enable high-powered computing and ever-faster processing speeds.

Realizing circularity

Two-phase immersion cooling fluids can operate with minimal leaks and enable the reprocessing/reuse of existing fluid—reducing environmental impacts and maximizing circularity.

Achieving climate goals

Realizing the aims of the EU Green New Deal, REPowerEU, and green data center initiatives requires a move away from competing cooling technologies, which consume far too much energy and water.

Attaining industry growth targets

Two-phase immersion cooling technology dramatically reduces the square footage, cooling infrastructure, and water required to operate a data center, reducing operating expenses and maximizing capital investments.

Benefits vs. Conventional Air/Water Cooling

- Lower energy usage: Boosts data center energy efficiency by as much as 40%.
- Improved system reliability: Fewer mechanical components (fitting, added filters, pumps, etc.) versus other cooling technologies, including cold plate and single-phase immersion systems. Also reduces space requirements by 60%.
- Higher power density: Can increase potential power density by a factor of 1.0 while keeping overall temperatures lower.
- Negligible water usage: Reduces water consumption by 99%.
- Longer hardware life: Doubles the lifespan of IT equipment vs. air cooling.
- Lower energy consumption: Boosts data center energy efficiency by as much as 40%.
- Lowest energy consumption
- Lowest CO2 equivalent emissions
- Lowest water usage
- Lower cost of ownership than air-cooled systems
- Best cooling capability for ever-increasing TDP
- Lowest energy consumption
- Lowest CO2 equivalent emissions
- Lowest water usage
- Lower cost of ownership than air-cooled systems
- Best cooling capability for ever-increasing TDP

Two-phase immersion cooling using dielectric fluids is critical technology for:

- Advancing next-generation computing speeds
- Achieving climate goals
- Attaining industry growth targets

Real Data Center Infrastructure Market Size: Shows How to Strike 2030 with 2020 Data

(*) pending regulatory approval

2 Ibid., pg. 16.
3 Data Center & Data Transmission Networks, "G.A. Alts, "How to engineer energy systems that use water and data transmission networks.
4 Ibid.
5 "Global Data Center Infrastructure Market Size: Shows How to Strike 2030 with 2020 Data," Globenewswire, 02-14-2023. CAGR 12.1%.
6 One-Pic Electron, 2023: "The Global Data Center Infrastructure Market Size: Shows How to Strike 2030 with 2020 Data." CAGR 12.1%.